
AL)A2 384 CAPILARYNSURFACEVONTINUI T 0 AOERREGUL AR DOMAINS 1/
U) WIONSIN UN _MADO SON MATHEMA CS RESEARCH CNTER

N R OREVAAR OC 82 MR-TR-243 DAAG29 80 C004
UNCASFE 0/ 1210



MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Or STANDARDS963-A111 [

' 

lit..... = .... " 'll1I1... .. I132



' I

MRC Tlechnilcal Summary Report #2439

CAPILLARY SURFACE CONTINUITY ABOVE
q iRRzGULrR DOMAINS

00 Nicholas J. Korevaar

Mathematids Research Center

University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706 LIECTEg

ELECTE f
October 1982 FEB 1 5 1983

>..(Received July 12, 1982) A

L.J

LA. Approved for public release

Distribution unlimited

sponsored by

I-

U. S. Army Research Office National science Foundation
. 0. sOox 12211 Washington, D.C. 20550

Research Triangle Park
North Carolina 27709

83 02 014 124



UNIVERSITY O WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

CAPILLARY SURFACE CONTINUITY ABOVE IRREGULAR DOMAINS

Nicholas J. Korevaar

Technical Summary Report #2439
October 1982

ABSTRACT

There are simple domains -Q-'in A?-having re-entrant corners for which

the variational solution u to the capillary problem exists, is bounded, but

does not extend continuously to 80. How possible is it to characterize

domains for which u must extend continuously? This paper contains the

following answer:

Theorem let P0 e W. Let u be the (variational) solution to the capillary

problem in 12 with contact angle y, 0 < y 4 w/2. If any of (i), (ii), or

(iii) hold, then u extends continuously to P0=

(i) 9 is convex in a neighborhood of P0, 30 has local Lipschitz

constant L < tan y.

(1i) 30 is (locally) two C1 curves meeting at P0 with interior

angle e satisfying w -2y ( 0 < w.

(iii) an is C1 at P0.
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angle
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SIGNIFICANCE AND EXPLANATION

After water is poured into a vertical tube with horizontal cross section
0 the function u whose graph Su describes the meniscus height satisfies
a nonlinear elliptic partial differential equation: The mean curvature of
Su  in proportional to its height above a fixed reference plane, and at the
boundary the angle of contact between (the lower normal of) Su  and (the
exterior normal of) 3n x R is physically determined (constant if the
cylinder is of uniform contruction).

Nonlinear elliptic equations with co-normal derivative boundary
conditions, of which the above capillary problem with prescribed contact angle
is a prime example, occur frequently in physical problems but have not been as
extensively studied as those with Dirichlet boundary conditions (u prescribed
on an). There are many known results about when variational (weak) solutions
to Dirichlet problems extend continuously to the boundary, but there is not
much literature about the same question for co-normal derivative problems.
That is the problem studied in this paper--for the special case of a two
dimensional capillary surface making prescribed angle of contact with the
bounding cylinder.

Roughly speaking, the main theorem in this paper says that u extends
continuou-ly to a point P0 e an if a is c there, if 30 is the vertex
of two C curves meeting with a convex (less than W) interior angle there,
or if 30 is convex with a not too large Lipschitz constant there. Since
there are easy counterexamples to show that u need not extend continuously
if P0  is the vertex of a re-entrant corner (interior angle greater than
i), these conditions are almost necessary as well as being sufficient.

Because well known results show that u actually extends smoothly wherever
a0 is sufficiently smooth, the importance of these results is that they

require a minimal amount of regularity for 30.

/ _ .... ....... ..
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li. Introductio

For a Lipschitz domain fl in R2a fucto

U e C2(g) (I C1 (a) is A classical solution to the capillary

problem in a gravitational field ifs

(1) div Tu 2U(Su) cu in Q

u DU - N E(S) amean curvature of the graph

(2) Tuen - cos Y on Q

0 4 Y 4 W prescribed, n - exterior normal to 80.

Physically, aS. describes the capillary surface formed when

a vertical cylinder with horizontal cross section a is placed in

an infinite reservoir of liquid having rest height equal to zero.

Sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041. This material
is based upon work supported by the National Science Foundation under Grant
No. MkCS7927O62, Mod. 1.



Then

-- where p - density of liquid
a

g - (downward) acceleration of gravity

0 - surface tension between liquid and air

cos Y - where a, - surface attraction between liquid and

cylinder.

Geometrically, Y is the contact angle between the (downward

normal to the) capillary surface Su and the (exterior normal to

the) bounding cylinder BA x R.

The function u minimizes the variational problem associated

with (1,2) if it minimizes the energy functional

(3) Z(f) - (1 + IDfl + -+ v_, v f---0 cog 

over the appropriate space of functions.

There are simple domains 2 in R2 having re-entrant

corners for which the variational solution to the capillary

problem exists, is bounded, but does not extend continuously to

30Q 131. How possible is it to characterize domains for which

u must extend continuously?

Theorem. Let P0 e 32. Let u be the (variational)

solution to the capillary problem in a with contact angle y,

0 < y 4 W/2. If any of (i), (ii), or (iii) hold, then u

extends continuously to P0 :

(i) is convex in a neighborhood of PO' a has local

Lipshitz constant L1 < tan Ti
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(ii) 3Q is (locally) two C1  curves meeting at P0  with

interior angle 0 satisfying T- 2y < 8 < Wi

(iii) au is C1 at PO.

Since well known boundary regularity results imply that u

extends smoothly wherever 30 is smooth enough (see e.g. 117. 19]),

the importance of this theorem is that it does not require much

regularity for M0. Roughly speaking, in order for u to have a

jump at PO it needs room, such as at a re-entrant corner. If

the corner is convex or there is no corner, a bounded u can have

no jump and must be continuous.

Studying the same problem, Simon has shown that if PO is

the vertex of two C I'  curves meeting with interior angle 8,

w - 2y < 0 < w, then u actually extends to be C1 at P0

(161. His method requires a strict corner 0 < v, CI,* curves,

and uses geometric measure theory to get a strong result: u is

CI at P0. Our method requires less of the boundary, uses only

comparison methods, but gives a weaker result: u is continuous

at PO.

(The condition 6 > w - 2Y (and the related L1 < tan y)

that occurs in these theorems is essentially geometric: If u

was to extend to be C1 at PO and if the contact angle

condition was to be satisfied with both faces of 30 x R there,

then 0 ) w - 2y is necessary for the tangent plane to exist.

For 0 < W - 2Y no tangent plans can exist, and in fact u

approaches infinity as P0  is approached in this case [3]).

-3-



12. Preliminaries

First some notation: Domains 2 shall be bounded with

Lipschitz boundary ail unless otherwise stated. We restrict to

the case 0 C R2 . All integrals over a domain are with respect to

(2-dimensional) Lebesgue measure, all integrals over boundaries of

domains are with respect to (1-dimensional) Hausdorff measure.

11t is the area of 0, iJa3l is the length of M0. n0(PO ) and

a (P ) are the open ball of radius p centered at P. and itsp0

boundary sphere.

We discuss capillary surfaces that solve the variational

problem (3) associated with (1) and (2), u should minimize

+0 2 a f

over the appropriate space of functions. The three terms making

up the energy functional are (in order) surface energy, potential

energy from gravity, and wetting energy. anmer [5] and Finn-

Gerhardt [2J have studied the existence of variational solutions

u to the capillary problem in Lipshitz domains 11. When it

exists the function u is real analytic in n and satisfies

(1). Wherever 30 is smooth enough u extends smoothly and

satisfies the boundary condition (2) classically [1.7, 19].

Even when a2 is only Lipschitz, however, the fact that u

minimizes the energy (3) implies that (2) is satisfied in some

weak (integral) sense. This weak boundary behavior is still

strong enough to use a comparison method for surfaces of related

-4-



mean curvature and contact angle. The comparison method has been

widely used in capillarity (1-4, 7, 13-15, 20, 22-24) and a

version of it is also the primary tool used to prove our main

theorem.

We state below the particular form of the comparison

principle used here, after defining the type of weak boundary

behavior for which it is valid.

Definition. A sequence of domains (ik} exhausts 11 if

each ank e C I cn, 1  andU
C2 )

Defi nition. Lot u SC ). (a) L (a). Tuen - V weakly

on 3 if for any exhausting sequence (Y. and for any

f e L() n V

lim fn f .nk - lag vf nk - exterior normal to ank.

Local boundary values of Tuen must sometimes be considered.

This can be done in a manner consistent with the above definition:

Definition. Let U C Rn be open. Let u e c2 (2)1

Ve (a n U). Tu.n - v weakly on 31nfl U if for any

exhausting sequence {2k ) of 0 and any f e L(0) n w1 '1 (Q)

st. the essential support of the trace of f on 3O is

compactly contained in U A an,

"a fi ff f"nk f, 82 '
k+ k

-5-



Remark. To prove that the variational solution satisfies

Tu-n - v weakly, one does the usual Euler-Lagrange derivation of

equations and boundary conditions from (3), except that one

integrates by parts over 0k instead of over 9 (u is smooth in

9, hence over 0 k ). The details can be found in (7], or for a

more systematic exposition, (14]. In the same references it is

also shown that a smooth surface Sv that classically satisfies

Tven - V (wherever n is defined) also satisfies Tven - V

weakly.

Comparison Principle. (Essentially Lemma 3 of [2] ) Let

vow, e C 2(2). Consider a component 0 of the set on which

v ) w. Suppose that:

Mi) x e 0- div Tv(x) > div Tw(x),

(ii) on 6 n 30, Tv-n 4 Twen weakly.

Then 0 - *. (So if (i) and (ii) are true for all components,

v C w).

(Condition (ii) means that there is some open set

U D J O on which Tv-n and Tw*n are defined weakly and

that their weak values satisfy Tvan • Tw-n almost everywhere on

L" n 30). See [7) or (14[ for the proof of the comparison

principle.

-6-



13. Proof of Theorem

The techniques used to prove the main theorem are barehanded.

The accompanying figures should help keep notation and ideas

organized. The proof follows this outline:

We consider the domain 9, P0 e 30, and the variational

solution u eC 2(0) n H I' () of (3). We take T to be

constant, 0 < Y < w. (Essentially the same proof works if y is

allowed to be a continuous function on 30). Since u minimizes

(3) iff -u minimizes (3) with v replaced by -v, it is no

loss of generality to assume 0 < y ( v/2, and we do.

Let

U - lia sup u(P), L- him inf u(P).
P+O 10,pea P 0 ,O Pea

If L and U are finite, then certain geometric contraints

on 39 imply the existence of *ridges" and ditches": For any

C )' , a 01 > 0 so that for any radius p, 0 < p < p,, there

is a ridge and a ditch V'. These are connected components
P P

in D(0) n 9 of the sets on which u(P) > U - t and

u(P) < L + , respectively, and extend from P0  to SO(P0)o

(See Figure 2 and Lemma 3).

For domains satisfying conditions (i), (ii), or (iii) of the

main theorem an explicit comparison function is constructed

(Pigure 3 and Lemma 4). if L 0 U, it is used to slice through

either the ridge or the ditch and thus to contradict the

comparison principle (Figures 3. 4, and Theorem I). Thus, L - U

and u is continuous at Poe

-7-. ___ J



The existence of ditches and ridges as well as the argument

used with the comparison principle depend on the special topology

of R. The comparison argument is similar in spirit to one used

by Finn for minimal surfaces [6], and later by Finn-Giusti for

constant mean curvature surfaces [8] to obtain interior gradient

bounds in two dimensions.

Because Df is Lipschitz near P0 there is a Lipschitz

function y - O(x) and a neighborhood V of the origin so that

after a translation and rotation

P( O (0,0)

V n a V )(p - (x,y) a.t. y<W.

If 0 satisfies (i), (ii), or (iii) of the theorem stated in

the introduction, we may also suppose that

(5) lim *'(x) 0 ; lim+ '(x)
x*0 x O

and

(6) supl#'(x)l - L1 ( tan y

(x,e'(x)) e V.

(The limits and sup are taken over those values of x for which

*'(X) exists).

We prove:

t- Theorem 1. If (4)-(6) are satisfied and if u is the

variational solution to the capillary problem with contact angle

y in 0, then u extends continuously to P0
o

The first step ins

-- 8



Lemma 1. If (4)-(6) are satisfied, there is a neighborhood

U C V of P0  so that u is uniformly bounded in U n n.

Proof. We introduce the concept of an internal sphere

condition with contact angle (due to Finn-Gerhardt (7]). Domains

satisfying this condition have uniformly bounded solutions u. We

then show that if 2 satisfies (4)-(6) of Section 3, it satisfies

the appropriate internal sphere condition with contact angle y,

near P0.

Definition. Let 0 4 y0 4 W/2 and P C 2o P satisfies an

internal sphere condition with contact angle YO  and radius p

(P e i.s.c. PT) if there is a ball BP of radius p, P e B P

such that any lower hemisphere lying above B makes contact

angle 4 y0 at all points of contact with 0 x R for which the

4

normal to 32 is defined.

Definition. A neighborhood U 2 satisfies a uniform

internal sphere condition with contact angle Y0  and radius

6 (Uf ) ti .S.C. 4,T0) if P e U ( 0 so p P 6 s.t.

P e i s.c.p *

This concept is illustrated in Figure 4. We have:

Step I(E7]). If U r 0C I.S.C*6,Y0, then any solution u

to the variational capillary problem (3) with lvI 4 cos y. is

uniformly bounded in U r 0.

Proof. (See 171). This is a straightforward application of

the comparison principle. The comparison surfaces are the graph

of the solution, sufficiently high lower hemispheres (for the

upper bound) and sufficiently low upper hemispheres (for the lower

bound).

-9-



Figure I:

Ihke internal sphere
condition with
contact angle.

A cormer with interior
angle # satisfies a
uniform internal sphere
condition for any

71 'r-0-0
2'

i..

0
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Sto 2. We show that i.f £2 satisfies (4)-(6) there is a

neighborhood U of PO an~d a tS > 0 so that

r) L I.S.C. 6 Let e,p > 0. Take

U B(P P1 M (0, -0(0-)).

For small enough c,p, we will have U n 0 C I.S.C. YTS

- For the lower hemisphere above U, z - v(P), we have

TV(V) - - (P-p
p

The exterior normal n to )Q is

*1

so that for P - (x,y) e a P(P1)~2

(7) Tven W A + (-x l + y + PO-0)

if *I(x) exists then

y - f0 *'(t)dt - 0o (#'(t) - *I(x))dt + x#"(x).

But (5) implies that the right and left-hand limits of *' exist

at x0 0. Thus, for any ;1 I 0 3.% > 0 s.t.

(8) p < p0 1 y - x4'(x) -C1p.

Combining (7) and (8) implies that if p < pot

(9) Tven .

from (6) we have



(10) 1 1 co(lo) ,/ +'.,) A- L, / + tan2

so that we may choose r6, 1 small enough to make

1 , (1-C-c1)) cos Y.7,

Thus. for p < p0 (C1),

Tven ) cos Y. Q.E.D.

We use the following facts often and group them as:

Lemma 2. Let U be an open set, v e C2 (U) ) HI' (U). Then

for almost all z, (P: v(P) - z) is a regular set (a collection

of simple closed curves and curves without endpoints in U) with

finite total length.

If r is any smooth curve in U, then almost all level sets

of v in U are transversal to r.

Proof. Almost all level sets are regular by Sard's

Theorem. The co-area fomula [9] implies that almost all the

lengths are finite, since v e WI'I(U).

Parameterize r by arclength s and consider the

restriction of v to r. By Sard's theorem almost all level

sets S are regular with v'(s) 0 0 on S. These sets S must

arise from transverse intersections between r and level sets

of v in U. Q.E.D.

Lemma 3. If u is bounded and (6) is satisfied (in

particular, if (4)-(6) are satisfied), then given C > 0,

3 Pi > P s.t. for all 0 < p < pit

-12-



(a) There is a ridge Ce, a connected component of the sot on
P

whichu > U - C satisfying P eR and 1C n Sp(P) n a .0 p

(b) There is a ditch V:, a connected component of the sot on

vhich u(<L +c satisfying P e b and De AS(P ) n 1 .

Proof. Since u is bounded in U l Q, H(S ) is bounded

(1) and we may pick N1 < o so that

(11) Idiv Tu(P)j < KI P e U nf.

Let 9 > 0 be given. To find Re we compare Su to the upperup~

half of a horizontally inclined cylinder. Its axis of symmetry is
1

parallel to the x-axis and it has radius - (see Figure 2).

Specifically, let

v(xy) -X )- 1 )2

By a useful abuse of notation we continue to call this

function v and its graph .sv  even if ve raise it or lower

it. By construction, for all P in the domain of v and in

U n 0,

(12) div Tv - 2H( ) -x I < div Tu

Making 8 small enough and picking a small enough

neighborhood U C U of PO we can satisfy

(13) Tven ) coo y on On n U,

-13-
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lMdss and Ditches.

Iaw
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This is because L, < tan Ys

"1 ,Tv - >.L. >**~ L con ye
3 V

v

(By making small enough, 7  can be made arbitrarily

close to I near P. - (0.0)). y

Lift Sv  so that the points P in U 1 rl 0 above which

Ov  intersects S. from a regular set with finite total length

(Lemma 2), and so that

U - - -A < V(Po V -3

3 0 3

Since v is continuous at P0  there in a p1 I 0,

S(P0 ) C U1 and

(14) U.3U < v(P) < U- P (P)(1)4 4 90

For P < pie (12), (13), and the comparison principle imply

that every component 0 in a flO of the set on which u > v

must have limit points intersecting S P (in a set of non-zero

ausdorff measure).

Because of (14) there are points P arbitrarily near P0

where u(P) > v(P). For each i e N (with 1/i < p) pick Pi

Bete

IP0 - Pil <fe u(Pi) > v(Pi).

Let 0£ be the component in () 0 of the set on which

u > v containing Pi" Since O, l 8P(PO) 0 *, it follows that

-15-



i
(is) laOil ) 2lp - 1.

Since (UO ) has finite length in B and since at most
ii p

two Oils can share any given boundary curve, there are only a

finite number of distinct 0 ils. Hence, one of them, 0 il

contains infinitely many Pi's, so has PO as a limit point.

From (14) it follows that Oil is part of a larger component in

a 0 n of the set on which u > U - C. This component is

our ridge.

Finding the ditch p uses the analogous procedure: Instead

of the upper half of the cylinder placed to intersect P0 x R at

a height just beneath U, one places the lower half of the

cylinder so that it intersects P0 x R just above L (see

Figure 1). Q.Z.D.

Remark. Lensa 3 uses the fact that 2 C R2 cruciallyl the

inequality (15) would not follow in general 1h.

Lama 4. Suppose (4)-(6) are satisfied. Let the following

be given

6, 62 > 0

L,UM satisfying -M < L < U < M.

Then there is a neighborhood U of PO - (0,0) and a comparison

function v defined on U r) 2 satisfying

2(M) v e C2Un0), 1div Tv - Kv < id
4

(ii) a(U fl) - U ri , where the r, are described in
-Ja-
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Figure 3, and

Tv-n ) o an "

v m  H n 2

V -K on r3

Tven ( coo Y on r4 s

(Uii) For P near enough P0' JV(P)- &-I <2 2 •

Proof. (see Figure 3) 8v  will be almost vertical and its

level sets at height a will almost be arcs with curvature KZ.

(The fact that almost vertical surfaces with almost circular level

sets can almost satisfy the capillary equation has been used

effectively to study capillary surface behavior above corners with

interior angle 0 U3 2 i t e

The function a v(xy) is given implicitly (after a

rotation about the a-axis) by

(16) M Kz y(y~h) + 8(y+h)hp(:)

where h is small, 8 • h, and o(s) satisfies

3 2 C.,I , o, 0 in a small neighborhood of z- -1-X.

Xf 6 - 0 the surface 8v has a level set at height z

that is part of the parabola through (0,0) and (0,-h), and

that has curvature almost equal to xz. For 0 < 6 ( h the

second term on the right of (16) is a small perturbation added so

that v satisfies (ii) and (iii).

-17-
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Figure 2 shows the surface S. satisfying all three

conditions of Lemma 2. The key property of the differential

equation (1) that allows the construction of Sv  is that the mean

curvature is strictly increasing with height. The key property of

3D is the "half C1" condition (5). (it's necessary for (ii)).

When it doesn't hold, for example at a re-entrant corner, u may

fail to be continuous [13].

The calculations verifying (i), (ii), and (iii) of Lemma 4

are included as Appendix A. Q.E.D.

Lemma 5. (A crossing lemma in two dimensional topoloqy)

Consider a simple closed curve X with interior 0. Let A,

B, C, D be a distinct, consecutively-ordered points on E. If a

simple curve r in 0 has A and C as its two endpoints, then

the following holds

i) There in no curve in 0, disjoint from r,

connecting B to D.

(ii) No connected open subset of 0 disjoint from r can

have both B and D as limit points.

Proof. This levna is a consequence of the Jordan Curve

Theorem: Consider the simple curve obtained by following r

from A to C, then following Z from C to D to A. All

points in a neighborhood 8 of B are exterior to this curve.

(They can be connected to infinity). All points in a

neighborhood V of D and inside 0 are interior to the curve

(since the points outside 0 are exterior to iti. Hence, any

-19-
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path in 0 connecting points in P A 0 to points in B A 0 must

cross r. This proves i) and (ii). Q.E.D.

We are now in a position to prove Theorem 1. We suppose

U > L, equations (4), (5), (6), and get a contradiction. Let

'5., U-L(17) C < -L-
6

By Lemma 3, a p1 > 0 s.t. for P < p there is a ridge
I I

R and a ditch VP. Pick

-€ -

(18) R eR n S (P0 ) n G D ePn s (P) n

We assume that there are arbitrarily small p > 0 for which

R is oriented clockwise in 9 from D on S (Po). This is

no loss of generality: One could reflect the domain 9 and the

solution u across the y-axis, preserving (4), (5), (6), and the

resulting lemmas, but changing the relative orientations of

D Pand RP. Let

(19) 61 M a2 =

Pick a comparison surface Sv satisfying Lemma 4. U will be the

domain from this lemma, above which v is defined. From (17)-

(19), and (iii) of Lemma 4, 3 p 2 < p1  s.t. for p < 2'

P e n a -u(p) ; U - C > U+L + 2c > v(P) + C

(20)

P e f n *u(P) 4 L + C < +L 2 v(P)
p 2

-20-



Fix a P < P2 and the resulting Re, g, R * D , with R

oriented clockwise in A from DP on 8P(P0 ). Equations (18),

(20) imply that atl i is contained in a component R inp

UA l2 of the set on which u > v + t. Also, aU is

contained in V, a component in U n Q of the set on which

u < v - g. Combining (U) of Lemm 4 with (19), (20) yields

(21) for points in R, div T(v+E) - dLv Tv < ic(v+S 1) < Ku - div Tu

for points in V, div T(v-) > div To.

Thus, the combination of the comparison principle and all

four conditions from (ii) of Lama 4 imply

Ii n (r3  r4)I o
(22)

( I1 U r 2)j 0.

• Because of the way they were picked, (22) implies that R

and V must "cross" each other (see Tigure 4). But R and V

cannot intersect. Making this argument rigorous is technically

tedious, but proves Theorm 1.

We can assume that 3R, Vi' are regular, of finite length in

U () Q, and that 8R and sO meet s (P 0 ) tranaversally. (if

not, use Lama I and pick a slightly larger c < -. The
6

old R,V will be contained in a new R and P (larger)

components of the sets on which u > v + , U < v -,

respectively).

We show that (22) cannot be satisfied.

-21-
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Let R be the component of R n BP(P 0 ) which contains RP

in its closure. Let VP be the component of V ) BP(P 0 )

containing D in its closure (figure 4).
P C C p ota

By construction R C R and V C VP so that

(23) P0 eRP, P0 e §.

There are only a finite number of other components of

R r DP(P0) having P0  and points on SP(P0) ) a as limit

points, since OR has finite length. If any of these have limit

points on S (P ) that are between R and D but nearer to
P 0 p p

D than the limit points of RP, relabel: Take the one of

these with the nearest (counterclockwise from D P) limit points

on SP(P 0 ) and call it R P. Relabel one of its limit points on

S (P ) n R as R * (Such limit points in R exist because
p 0 p p p

R is transversal to S ). Equation (23) still holds and we

proceed.

Let R, be the point between R and D on S P(P0 )

nearest D and in RP* Let DI be the point between R and

D on S P(P 0) nearest R and in 5P (Figure 3).

We follow the curves 1r of OR through R, and r of

8D through D. Let r+, r be the rays initially entering

B (P0). Let 'R, r; be the rays initially leaving it.

Follow, r into B P(P 0 ). It cannot intersect S (P )

again. (We use (23) and Lemma 5 repeatedly here): if it

intersects S
p

-23-



(a) between r and R P then P 0 RP
(b) between R and R or at R then R P p

(c) between R and D , then R1 is not the nearest

point to D between R and D on KPA S (P0),

(d) between D and r4 , then P 0  P-

Because 3R has finite length, 4 has exactly one limit

point. Eecause 3R is regular this point is on Mr)A Bp (P 0). it

must be P0 : otherwise the combination of (23) and Lemma 5 (with

the other three points being RP, DPI and P0 ) would be

contradicted.

The same reasoning shows that r never intersects S (P 0 )
V P 0

after Dlt and has P0 as its limit point.

Flblow " out of B (P )o It too must eventually have aP 0

limit point on (U n 0). Before it reaches R2 it can

Interi*ct 8 1(P0) a finite number of times between R and D

Any t' t -&ters a P(P ) through this arc it may:

(a . ... t another arc of SiP(P 0 ) between F1 and R

or betw*. 1 r 4 . :n either case, this would contradict

the coub;.,c , off 23) and Lmma 5.

(b) N4: .- re a (P ). Arguing as with it would follow
0R

that rRma li,.t. int was P0. T! its last intersection R3

with 8 a
P

1M1 between R a-id R1 , "'.en R, could not be in

RP
L() between R, and , thee, the arc of r

0 R

from R3 to P0 bounds a component of R

-24-



a.

having PO and points on 8p between R, and

D as limit points. This contradicts thep

paragraph following (23).

(c) Leave BP(P 0) through the same arc.

Thus, case (c) happens, so rR intersects the arc of 3 (P0)

between R and D an odd number of times.
P P

Consider the simple closed curve Es from PO to RI

(along r+), from RI to R2  (along R), then clockwise along

0(U 2 f) back to Po. By construction, R and hence all

of R is interior to E. Thus, (22) implies that

2 e ar3 u r 4\ (r2 n r 3.

Because E is transverse to (P0 ) and intersects the arc

between RP and D an odL number of times, D and hence all

of must be exterior to Zeo Thus, 7 Canot intersect

r I u2 and we have our contradiction to (22). Q..D.

-25-
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14. Related Questions

in what ways can Theorem 1 be generalized? It is clear from

the proof that y could be allowed to vary continuously along

3 (, with 0 < y(P) C W. The differential equation could be

generalized to

af

div Tu - f(x,u), f continuous in (x,u), V- ) CO> 0,

provided it was the Euler equation for a variational problem that

implies the weak boundary behavior needed for the comparison

principle.

Are there situations for which an is not regular but u

still is more than just continuous?

Conjecture. If 0 is (locally) convex in a neighborhood of

P0 e an, with Lipschitz constant L1 I tan y, then u is

Lipschitz continuous there.

One cannot expect much more than Lipschitz continuity in this

case: One can construct a convex domain in R2 for which P0  is

the limit (from both sides of 30) of points on ai at which

90 is locally a convex corner. If u is C1 , then the contact

angle condition on each segment of the corner uniquely determines

the tangent plane at the corner. if an does not have a tangent

at PO, the limiting values of the gradients of u at these

corners will be different from each side (provided Y * /2).

Do the results of Theorem 1 generalize to Rn? The method

does not seem to.

-26-_ _ _ _ _ _ _ I i
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&ppendix A: Proof of Lemma 4

We consider the function

KZ

(1) x - 2 y(y+h) + 6(y+h)O'(z) - g(yz)

and its graph S. We show that for a correct choice of the

parameters h, 6, and the function 0, (a rotation of) S will

satisfy the conditions of Lemma 4.

Require initially:

(a) 0 < < hi

(b) I-pi < 1, 0'(z) C 0C2 [-HI M]

(c) Iz1 < N, -h < y < min(aIxI,h),

where a > 0 is chosen large enough to guarantee that the

rotation of S needed to satisfy the contact angle conditions

(ii) of Lemma 4 will keep S lying above a satisfactory

neighborhood U n A. For example, choose

(d) a > 2tan IM-yI.

We first find a 0 and bound h so that S is a C2

graph z - v(xy) and so that condition (iii) of Lemma 4 is

satisfied. Let

36 2uA(z-Z) > 1 n + L
1 1 2 2

(2) 0(z)- 0 L O0 U 2

10 2 2

IS(z O-Z) 3 0 > Z,

-28-



where V ), 0 is small, so that u satisfies (b). If

(xyyz) e S and (xey) is near PO, (1) implies that O(z) is

small. It follows from (2) that if (xvy) is near enough to

POO z lies between the bounds of (iii).

The surface a is C2 . To show that it is a graph

z - v(x,7) it suffices to show that < 0 in the entire regionas

(C). since

(3) gs " ( 4 U) K- + $0 (Z)l

and since VW(z) 4 0, ga is negative for y < 0. For

0 4 y < -in(OxIIh) we are more careful. From (3) ve want

VO(z) < - !.• So for (xyoz) e Be 0 4 y < min(aixi,h) it

suffices to find

(4) s)

we want (4) to be satisfied for small enough h. We treat the

case x < 0, a sz. The ca"e x ) 0, s < so  is analogous. if

x - 0, then y < 0). FV= (1) and (a) we have

0 > x - (yoh) rE- y + 80(z)3 ), 2h-C + 60(M)I.

Thus

x(1 - sKcl ) 2hSO(s).

If I

(e) h h 0 C

then

-29-



(5) x > 2ch(z), C I -11 - ho0nda

Plugging (5) and the explicit form (2) of V, into (4) gives

2 3
-3ia(z 1 -Z) < ch(z 1 -z)3

This inequality holds near z I - z. To make it true for all

Zi < a < N the bound (e) on h may be lowered if necessary.

Thus, qz is negative in the entire region (c) and we may

write S - Sv. To calculate the mean curvature of S we return

to the parameterization x - g(yz):

r + ap z(y+!l)+8vo(z) - o (h)

y 2
z " 2 y (y + h) + 6 (y + ),P'(z) - O(h2 )

(6) gz W (y + h)W(z) - 0(h 2)

g3r M KZ '

hg M x(y + T+ 6W(z) - 0(h).

C1+821gyy + (1+r)g - 2rsgYz
div Tg(y,z) + 2 2)3/2

=KZ + 0 (h 2)

Thus 3 h, so that

(f) 0 < h < h1

mplis condition (i)s

Idiv TV- ,vI < K61.
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it remains to verify (ii). oefine r2 and r3 to be the

sets in R2 above which S has height M and -14,

respectively. For small enough h it is easy to calculate that

the restriction of (c) that y < h is redundant; the (arrowhead-

shaped) region A in R2 above which S is a graph is bounded

by the arcs r2. r3  and the wedge y - ulxI.

To simplify the calculations we fix S and rotate 80)

about P0 - (0,0) (rather than rotating S and fixing 30). We

continue to use # for the function describing 32. At a point

(x.y,z) of contact between S and 32 x R, the (downward)

normal to S is
I

/1 2e2(-i~r..).

The (exterior) normal to 30 x R in

(-*',1,o).

So their dot product is

(7) Tvn -

Since h is small and rs - 0(b) the correct rotation of

30 will make #I/ vary near cos y, nearly a rotation of

w/2- Y radians. The choice (d) on a insures that

#(x) < aJxJ for such rotations so that 8 is still defined

above a suitable neighborhood in Ot define r I and r3  to be

-31-



the intersection of 32 with the points in A to the left and

right of x - 0, respectively.

From (5) of Section 3,

(a) i. *'(x) ) u (x)f

and by construction (see (2), (6))

,irn E_ (z -z) +in r
X+0 2 1 0 X+O+

(9)

lin s - lim+ s.
x+O 39-0

It follows from M7-(9) that for h small enough there is a

rotation of 3W making

ia- Tven > cos Y > lin + Tven.
X+O X+O

Make the parameter 6 of (1) (which was free until now)

small enough so that all x-values of 8 fl (80 x R) are near

enough zero to force the conditions

1vn >coosy on!'1, Tven <cooy o n r 3

This finishes the verification of (ii) and thus of the entire

toea 4.
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